Soil Contamination
Soil pollution is caused by the presence of man-made chemicals alteration in the natural soil environment. This type of contamination typically arises from the rupture of underground storage tanks, application of pesticides, percolation of contaminated surface water to subsurface strata, oil and fuel dumping, leaching of wastes from landfills or direct discharge of industrial wastes to the soil. The most common chemicals involved are petroleum hydrocarbons, solvents, pesticides, lead and other heavy metals. This occurrence of this phenomenon is correlated with the degree of industrializations and intensities of chemical usage.
The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapors from the contaminants, and from secondary contamination of water supplies within and underlying the soil[1]. Mapping of contaminated soil sites and the resulting cleanup are time consuming and expensive tasks, requiring extensive amounts of geology, hydrology, chemistry and computer modeling skills.
It is in North America and Western Europe that the extent of contaminated land is most well known, with many of countries in these areas having a legal framework to identify and deal with this environmental problem; this however may well be just the tip of the iceberg with developing countries very likely to be the next generation of new soil contamination cases.
The immense and sustained growth of the People's Republic of China since the 1970s has exacted a price from the land in increased soil pollution. The State Environmental Protection Administration believes it to be a threat to the environment, to food safety and to sustainable agriculture. According to a scientific sampling,150 million mi (100,000 square kilometres) of China’s cultivated land have been polluted, with contaminated water being used to irrigate a further 32.5 million mi (21,670 square kilometres) and another 2 million mi (1,300 square kilometres) covered or destroyed by solid waste. In total, the area accounts for one-tenth of China’s cultivatable land, and is mostly in economically developed areas. An estimated 12 million tonnes of grain are contaminated by heavy metals every year, causing direct losses of 20 billion yuan.
The United States, while having some of the most widespread soil contamination, has actually been a leader in defining and implementing standards for cleanup[3]. Other industrialized countries have a large number of contaminated sites, but lag the U.S. in executing remediation. Developing countries may be leading in the next generation of new soil contamination cases.
Each year in the U.S., thousands of sites complete soil contamination cleanup, some by using microbes that “eat up” toxic chemicals in soil[4], many others by simple excavation and others by more expensive high-tech soil vapor extraction or air stripping. Efforts proceed worldwide to identify new sites of soil contamination.
Ecosystem effects
Not unexpectedly, soil contaminants can have significant deleterious consequences for ecosystems. There are radical soil chemistry changes which can arise from the presence of many hazardous chemicals even at low concentration of the contaminant species. These changes can manifest in the alteration of metabolism of endemic microorganisms and arthropods resident in a given soil environment. The result can be virtual eradication of some of the primary food chain, which in turn have major consequences for predator or consumer species. Even if the chemical effect on lower life forms is small, the lower pyramid levels of the food chain may ingest alien chemicals, which normally become more concentrated for each consuming rung of the food chain. Many of these effects are now well known, such as the concentration of persistent DDT materials for avian consumers, leading to weakening of egg shells, increased chick mortality and potential extinction of species.
Effects occur to agricultural lands which have certain types of soil contamination. Contaminants typically alter plant metabolism, most commonly to reduce crop yields. This has a secondary effect upon soil conservation, since the languishing crops cannot shield the Earth's soil mantle from erosion phenomena. Some of these chemical contaminants have long half-lives and in other cases derivative chemicals are formed from decay of primary soil contaminants.
Regulatory framework
United States of America
Until about 1970 there was little widespread awareness of the worldwide scope of soil contamination or its health risks. In fact, areas of concern were often viewed as unusual or isolated incidents. Since then, the U.S. has established guidelines for handling hazardous waste and the cleanup of soil pollution. In 1980 the U.S.Superfund/CERCLA established strict rules on legal liability for soil contamination. Not only did CERCLA stimulate identification and cleanup of thousands of sites, but it raised awareness of property buyers and sellers to make soil pollution a focal issue of land use and management practices.
While estimates of remaining soil cleanup in the U.S. may exceed 200,000 sites, hundreds of new sites are identified each year, and in other industrialized countries there is a lag of identification and cleanup functions. Even though their use of chemicals is lower than industrialized countries, often their controls and regulatory framework is quite weak. For example, some persistent pesticides that have been banned in the U.S. are in widespread uncontrolled use in developing countries. It is worth noting that the cost of cleaning up a soil contaminated site can range from as little as about $10,000 for a small spill, which can be simply excavated, to millions of dollars for a widespread event, especially for a chemical that is very mobile such as perchloroethylene.
United Kingdom
Generic guidance commonly used in the UK are the Soil Guideline Values published by DEFRA and the Environment Agency. These are screening values that demonstrate the minimal acceptable level of a substance. Above this there can be no assurances in terms of significant risk of harm to human health. These have been derived using the Contaminated Land Exposure Asseeement Model (CLEA UK). Certain input parameters such as Health Criteria Values, age and land use are fed into CLEA UK to obtain a probabilistic output[citation needed].
Guidance by the Inter Departmental Committee for the Redevelopment of Contaminated Land (ICRCL) has been formally withdrawn by the Department for Environment, Food and Rural Affairs (DEFRA), for use as a prescriptive document to determine the potential need for remediation or further assessment. Therefore, no further reference is made to these former guideline values.
Other generic guidance that exists (to put the concentration of a particular contaminant in context), includes the United States EPA Region 9 Preliminary Remediation Goals (US PRGs), the US EPA Region 3 Risk Based Concentrations (US EPA RBCs) and National Environment Protection Council of Australia Guideline on Investigation Levels in Soil and Groundwater.
However international guidance should only be used in the UK with clear justification. This is because foreign standards are usually particular to that country due to drivers such as political policy, geology, flood regime and epidemiology. It is generally accepted by UK regulators that only robust scientific methods that relate to the UK should be used.
The CLEA model published by DEFRA and the Environment Agency (EA) in March 2002 sets a framework for the appropriate assessment of risks to human health from contaminated land, as required by Part IIA of the Environmental Protection Act 1990. As part of this framework, generic Soil Guideline Values (SGVs) have currently been derived for ten contaminants to be used as “intervention values”[citation needed]. These values should not be considered as remedial targets but values above which further detailed assessment should be considered.
Three sets of CLEA SGVs have been produced for three different land uses, namely
* residential (with and without plant uptake)
* allotments
* commercial/industrial
It is intended that the SGVs replace the former ICRCL values. It should be noted that the CLEA SGVs relate to assessing chronic (long term) risks to human health and do not apply to the protection of ground workers during construction, or other potential receptors such as groundwater, buildings, plants or other ecosystems. The CLEA SGVs are not directly applicable to a site completely covered in hardstanding, as there is no direct exposure route to contaminated soils.
To date, the first ten of fifty-five contaminant SGVs have been published, for the following: arsenic, cadmium, chromium, lead, inorganic mercury, nickel, selenium ethyl benzene, phenol and toluene. Draft SGVs for benzene, naphthalene and xylene have been produced but their publication is on hold. Toxicological data (Tox) has been published for each of these contaminants as well as for benzo[a]pyrene, benzene, dioxins, furans and dioxin-like PCBs, naphthalene, vinyl chloride, 1,1,2,2 tetrachloroethane and 1,1,1,2 tetrachloroethane, 1,1,1 trichloroethane, tetrachloroethene, carbon tetrachloride, 1,2-dichloroethane, trichloroethene and xylene. The SGVs for ethyl benzene, phenol and toluene are dependent on the soil organic matter (SOM) content (which can be calculated from the total organic carbon (TOC) content). As an initial screen the SGVs for 1% SOM are considered to be appropriate.
Cleanup options
Cleanup or remediation is analyzed by environmental scientists who utilize field measurement of soil chemicals and also apply computer models for analyzing transport[6] and fate of soil chemicals. Thousands of soil contamination cases are currently in active cleanup across the U.S. as of 2006. There are several principal strategies for remediation:
* Excavate soil and take it to a disposal site away from ready pathways for human or sensitive ecosystem contact. This technique also applies to dredging of bay muds containing toxins.
* Aeration of soils at the contaminated site (with attendant risk of creating air pollution)
* Thermal remediation by introduction of heat to raise subsurface temperatures sufficiently high to volatize chemical contaminants out of the soil for vapour extraction. Technologies include ISTD, electrical resistance heating (ERH), and ET-DSPtm.
* Bioremediation, involving microbial digestion of certain organic chemicals. Techniques used in bioremediation include landfarming, biostimulation and bioaugmentating soil biota with commercially available microflora.
* Extraction of groundwater or soil vapor with an active electromechanical system, with subsequent stripping of the contaminants from the extract.
* Containment of the soil contaminants (such as by capping or paving over in place).
The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapors from the contaminants, and from secondary contamination of water supplies within and underlying the soil[1]. Mapping of contaminated soil sites and the resulting cleanup are time consuming and expensive tasks, requiring extensive amounts of geology, hydrology, chemistry and computer modeling skills.
It is in North America and Western Europe that the extent of contaminated land is most well known, with many of countries in these areas having a legal framework to identify and deal with this environmental problem; this however may well be just the tip of the iceberg with developing countries very likely to be the next generation of new soil contamination cases.
The immense and sustained growth of the People's Republic of China since the 1970s has exacted a price from the land in increased soil pollution. The State Environmental Protection Administration believes it to be a threat to the environment, to food safety and to sustainable agriculture. According to a scientific sampling,150 million mi (100,000 square kilometres) of China’s cultivated land have been polluted, with contaminated water being used to irrigate a further 32.5 million mi (21,670 square kilometres) and another 2 million mi (1,300 square kilometres) covered or destroyed by solid waste. In total, the area accounts for one-tenth of China’s cultivatable land, and is mostly in economically developed areas. An estimated 12 million tonnes of grain are contaminated by heavy metals every year, causing direct losses of 20 billion yuan.
The United States, while having some of the most widespread soil contamination, has actually been a leader in defining and implementing standards for cleanup[3]. Other industrialized countries have a large number of contaminated sites, but lag the U.S. in executing remediation. Developing countries may be leading in the next generation of new soil contamination cases.
Each year in the U.S., thousands of sites complete soil contamination cleanup, some by using microbes that “eat up” toxic chemicals in soil[4], many others by simple excavation and others by more expensive high-tech soil vapor extraction or air stripping. Efforts proceed worldwide to identify new sites of soil contamination.
Ecosystem effects
Not unexpectedly, soil contaminants can have significant deleterious consequences for ecosystems. There are radical soil chemistry changes which can arise from the presence of many hazardous chemicals even at low concentration of the contaminant species. These changes can manifest in the alteration of metabolism of endemic microorganisms and arthropods resident in a given soil environment. The result can be virtual eradication of some of the primary food chain, which in turn have major consequences for predator or consumer species. Even if the chemical effect on lower life forms is small, the lower pyramid levels of the food chain may ingest alien chemicals, which normally become more concentrated for each consuming rung of the food chain. Many of these effects are now well known, such as the concentration of persistent DDT materials for avian consumers, leading to weakening of egg shells, increased chick mortality and potential extinction of species.
Effects occur to agricultural lands which have certain types of soil contamination. Contaminants typically alter plant metabolism, most commonly to reduce crop yields. This has a secondary effect upon soil conservation, since the languishing crops cannot shield the Earth's soil mantle from erosion phenomena. Some of these chemical contaminants have long half-lives and in other cases derivative chemicals are formed from decay of primary soil contaminants.
Regulatory framework
United States of America
Until about 1970 there was little widespread awareness of the worldwide scope of soil contamination or its health risks. In fact, areas of concern were often viewed as unusual or isolated incidents. Since then, the U.S. has established guidelines for handling hazardous waste and the cleanup of soil pollution. In 1980 the U.S.Superfund/CERCLA established strict rules on legal liability for soil contamination. Not only did CERCLA stimulate identification and cleanup of thousands of sites, but it raised awareness of property buyers and sellers to make soil pollution a focal issue of land use and management practices.
While estimates of remaining soil cleanup in the U.S. may exceed 200,000 sites, hundreds of new sites are identified each year, and in other industrialized countries there is a lag of identification and cleanup functions. Even though their use of chemicals is lower than industrialized countries, often their controls and regulatory framework is quite weak. For example, some persistent pesticides that have been banned in the U.S. are in widespread uncontrolled use in developing countries. It is worth noting that the cost of cleaning up a soil contaminated site can range from as little as about $10,000 for a small spill, which can be simply excavated, to millions of dollars for a widespread event, especially for a chemical that is very mobile such as perchloroethylene.
United Kingdom
Generic guidance commonly used in the UK are the Soil Guideline Values published by DEFRA and the Environment Agency. These are screening values that demonstrate the minimal acceptable level of a substance. Above this there can be no assurances in terms of significant risk of harm to human health. These have been derived using the Contaminated Land Exposure Asseeement Model (CLEA UK). Certain input parameters such as Health Criteria Values, age and land use are fed into CLEA UK to obtain a probabilistic output[citation needed].
Guidance by the Inter Departmental Committee for the Redevelopment of Contaminated Land (ICRCL) has been formally withdrawn by the Department for Environment, Food and Rural Affairs (DEFRA), for use as a prescriptive document to determine the potential need for remediation or further assessment. Therefore, no further reference is made to these former guideline values.
Other generic guidance that exists (to put the concentration of a particular contaminant in context), includes the United States EPA Region 9 Preliminary Remediation Goals (US PRGs), the US EPA Region 3 Risk Based Concentrations (US EPA RBCs) and National Environment Protection Council of Australia Guideline on Investigation Levels in Soil and Groundwater.
However international guidance should only be used in the UK with clear justification. This is because foreign standards are usually particular to that country due to drivers such as political policy, geology, flood regime and epidemiology. It is generally accepted by UK regulators that only robust scientific methods that relate to the UK should be used.
The CLEA model published by DEFRA and the Environment Agency (EA) in March 2002 sets a framework for the appropriate assessment of risks to human health from contaminated land, as required by Part IIA of the Environmental Protection Act 1990. As part of this framework, generic Soil Guideline Values (SGVs) have currently been derived for ten contaminants to be used as “intervention values”[citation needed]. These values should not be considered as remedial targets but values above which further detailed assessment should be considered.
Three sets of CLEA SGVs have been produced for three different land uses, namely
* residential (with and without plant uptake)
* allotments
* commercial/industrial
It is intended that the SGVs replace the former ICRCL values. It should be noted that the CLEA SGVs relate to assessing chronic (long term) risks to human health and do not apply to the protection of ground workers during construction, or other potential receptors such as groundwater, buildings, plants or other ecosystems. The CLEA SGVs are not directly applicable to a site completely covered in hardstanding, as there is no direct exposure route to contaminated soils.
To date, the first ten of fifty-five contaminant SGVs have been published, for the following: arsenic, cadmium, chromium, lead, inorganic mercury, nickel, selenium ethyl benzene, phenol and toluene. Draft SGVs for benzene, naphthalene and xylene have been produced but their publication is on hold. Toxicological data (Tox) has been published for each of these contaminants as well as for benzo[a]pyrene, benzene, dioxins, furans and dioxin-like PCBs, naphthalene, vinyl chloride, 1,1,2,2 tetrachloroethane and 1,1,1,2 tetrachloroethane, 1,1,1 trichloroethane, tetrachloroethene, carbon tetrachloride, 1,2-dichloroethane, trichloroethene and xylene. The SGVs for ethyl benzene, phenol and toluene are dependent on the soil organic matter (SOM) content (which can be calculated from the total organic carbon (TOC) content). As an initial screen the SGVs for 1% SOM are considered to be appropriate.
Cleanup options
Cleanup or remediation is analyzed by environmental scientists who utilize field measurement of soil chemicals and also apply computer models for analyzing transport[6] and fate of soil chemicals. Thousands of soil contamination cases are currently in active cleanup across the U.S. as of 2006. There are several principal strategies for remediation:
* Excavate soil and take it to a disposal site away from ready pathways for human or sensitive ecosystem contact. This technique also applies to dredging of bay muds containing toxins.
* Aeration of soils at the contaminated site (with attendant risk of creating air pollution)
* Thermal remediation by introduction of heat to raise subsurface temperatures sufficiently high to volatize chemical contaminants out of the soil for vapour extraction. Technologies include ISTD, electrical resistance heating (ERH), and ET-DSPtm.
* Bioremediation, involving microbial digestion of certain organic chemicals. Techniques used in bioremediation include landfarming, biostimulation and bioaugmentating soil biota with commercially available microflora.
* Extraction of groundwater or soil vapor with an active electromechanical system, with subsequent stripping of the contaminants from the extract.
* Containment of the soil contaminants (such as by capping or paving over in place).